资源类型

期刊论文 558

会议视频 10

年份

2024 1

2023 87

2022 92

2021 57

2020 57

2019 42

2018 31

2017 33

2016 24

2015 22

2014 8

2013 15

2012 2

2011 7

2010 8

2009 8

2008 12

2007 13

2006 7

2005 7

展开 ︾

关键词

机器学习 27

深度学习 15

人工智能 12

大数据 4

神经网络 4

主动控制 3

主动免疫 2

主动防御 2

人工神经网络 2

代理模型 2

农业科学 2

并联机构 2

强化学习 2

故障诊断 2

时间序列 2

材料设计 2

结构健康监测 2

高层建筑 2

2021全球工程前沿 1

展开 ︾

检索范围:

排序: 展示方式:

Machine learning-based solubility prediction and methodology evaluation of active pharmaceutical ingredients

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 523-535 doi: 10.1007/s11705-021-2083-5

摘要: Solubility has been widely regarded as a fundamental property of small molecule drugs and drug candidates, as it has a profound impact on the crystallization process. Solubility prediction, as an alternative to experiments which can reduce waste and improve crystallization process efficiency, has attracted increasing attention. However, there are still many urgent challenges thus far. Herein we used seven descriptors based on understanding dissolution behavior to establish two solubility prediction models by machine learning algorithms. The solubility data of 120 active pharmaceutical ingredients (APIs) in ethanol were considered in the prediction models, which were constructed by random decision forests and artificial neural network with optimized data structure and model accuracy. Furthermore, a comparison with traditional prediction methods including the modified solubility equation and the quantitative structure-property relationships model was carried out. The highest accuracy shown by the testing set proves that the ML models have the best solubility prediction ability. Multiple linear regression and stepwise regression were used to further investigate the critical factor in determining solubility value. The results revealed that the API properties and the solute-solvent interaction both provide a nonnegligible contribution to the solubility value.

关键词: solubility prediction     machine learning     artificial neural network     random decision forests    

化学工程师的主动机器学习 Perspective

Yannick Ureel, Maarten R. Dobbelaere, Yi Ouyang, Kevin De Ras, Maarten K. Sabbe, Guy B. Marin, Kevin M. Van Geem

《工程(英文)》 2023年 第27卷 第8期   页码 23-30 doi: 10.1016/j.eng.2023.02.019

摘要:

By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering. While active machine learning algorithms are maturing, their applications are falling behind. In this article, three types of challenges presented by active machine learning—namely, convincing the experimental researcher, the flexibility of data creation, and the robustness of active machine learning algorithms—are identified, and ways to overcome them are discussed. A bright future lies ahead for active machine learning in chemical engineering, thanks to increasing automation and more efficient algorithms that can drive novel discoveries. 

关键词: Active machine learning     Active learning     Bayesian optimization     Chemical engineering     Design of experiments    

Spatial prediction of soil contamination based on machine learning: a review

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1693-1

摘要:

● A review of machine learning (ML) for spatial prediction of soil contamination.

关键词: Soil contamination     Machine learning     Prediction     Spatial distribution    

Elucidate long-term changes of ozone in Shanghai based on an integrated machine learning method

《环境科学与工程前沿(英文)》 2023年 第17卷 第11期 doi: 10.1007/s11783-023-1738-5

摘要:

● A novel integrated machine learning method to analyze O3 changes is proposed.

关键词: Ozone     Integrated method     Machine learning    

State-of-the-art applications of machine learning in the life cycle of solid waste management

《环境科学与工程前沿(英文)》 2023年 第17卷 第4期 doi: 10.1007/s11783-023-1644-x

摘要:

● State-of-the-art applications of machine learning (ML) in solid waste (SW) is presented.

关键词: Machine learning (ML)     Solid waste (SW)     Bibliometrics     SW management     Energy utilization     Life cycle    

Using machine learning models to explore the solution space of large nonlinear systems underlying flowsheet

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 183-197 doi: 10.1007/s11705-021-2073-7

摘要: Flowsheet simulations of chemical processes on an industrial scale require the solution of large systems of nonlinear equations, so that solvability becomes a practical issue. Additional constraints from technical, economic, environmental, and safety considerations may further limit the feasible solution space beyond the convergence requirement. A priori, the design variable domains for which a simulation converges and fulfills the imposed constraints are usually unknown and it can become very time-consuming to distinguish feasible from infeasible design variable choices by simply running the simulation for each choice. To support the exploration of the design variable space for such scenarios, an adaptive sampling technique based on machine learning models has recently been proposed. However, that approach only considers the exploration of the convergent domain and ignores additional constraints. In this paper, we present an improvement which particularly takes the fulfillment of constraints into account. We successfully apply the proposed algorithm to a toy example in up to 20 dimensions and to an industrially relevant flowsheet simulation.

关键词: machine learning     flowsheet simulations     constraints     exploration    

Evaluation and prediction of slope stability using machine learning approaches

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 821-833 doi: 10.1007/s11709-021-0742-8

摘要: In this paper, the machine learning (ML) model is built for slope stability evaluation and meets the high precision and rapidity requirements in slope engineering. Different ML methods for the factor of safety (FOS) prediction are studied and compared hoping to make the best use of the large variety of existing statistical and ML regression methods collected. The data set of this study includes six characteristics, namely unit weight, cohesion, internal friction angle, slope angle, slope height, and pore water pressure ratio. The whole ML model is primarily divided into data preprocessing, outlier processing, and model evaluation. In the data preprocessing, the duplicated data are first removed, then the outliers are filtered by the LocalOutlierFactor method and finally, the data are standardized. 11 ML methods are evaluated for their ability to learn the FOS based on different input parameter combinations. By analyzing the evaluation indicators R 2, MAE, and MSE of these methods, SVM, GBR, and Bagging are considered to be the best regression methods. The performance and reliability of the nonlinear regression method are slightly better than that of the linear regression method. Also, the SVM-poly method is used to analyze the susceptibility of slope parameters.

关键词: slope stability     factor of safety     regression     machine learning     repeated cross-validation    

Machine learning in building energy management: A critical review and future directions

《工程管理前沿(英文)》 2022年 第9卷 第2期   页码 239-256 doi: 10.1007/s42524-021-0181-1

摘要: Over the past two decades, machine learning (ML) has elicited increasing attention in building energy management (BEM) research. However, the boundary of the ML-BEM research has not been clearly defined, and no thorough review of ML applications in BEM during the whole building life-cycle has been published. This study aims to address this gap by reviewing the ML-BEM papers to ascertain the status of this research area and identify future research directions. An integrated framework of ML-BEM, composed of four layers and a series of driving factors, is proposed. Then, based on the hype cycle model, this paper analyzes the current development status of ML-BEM and tries to predict its future development trend. Finally, five research directions are discussed: (1) the behavioral impact on BEM, (2) the integration management of renewable energy, (3) security concerns of ML-BEM, (4) extension to other building life-cycle phases, and (5) the focus on fault detection and diagnosis. The findings of this study are believed to provide useful references for future research on ML-BEM.

关键词: building energy management     machine learning     integrated framework     knowledge evolution    

Big data and machine learning: A roadmap towards smart plants

《工程管理前沿(英文)》   页码 623-639 doi: 10.1007/s42524-022-0218-0

摘要: Industry 4.0 aims to transform chemical and biochemical processes into intelligent systems via the integration of digital components with the actual physical units involved. This process can be thought of as addition of a central nervous system with a sensing and control monitoring of components and regulating the performance of the individual physical assets (processes, units, etc.) involved. Established technologies central to the digital integrating components are smart sensing, mobile communication, Internet of Things, modelling and simulation, advanced data processing, storage and analysis, advanced process control, artificial intelligence and machine learning, cloud computing, and virtual and augmented reality. An essential element to this transformation is the exploitation of large amounts of historical process data and large volumes of data generated in real-time by smart sensors widely used in industry. Exploitation of the information contained in these data requires the use of advanced machine learning and artificial intelligence technologies integrated with more traditional modelling techniques. The purpose of this paper is twofold: a) to present the state-of-the-art of the aforementioned technologies, and b) to present a strategic plan for their integration toward the goal of an autonomous smart plant capable of self-adaption and self-regulation for short- and long-term production management.

关键词: big data     machine learning     artificial intelligence     smart sensor     cyber–physical system     Industry 4.0     intelligent system     digitalization    

MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1677-1

摘要:

● MSWNet was proposed to classify municipal solid waste.

关键词: Municipal solid waste sorting     Deep residual network     Transfer learning     Cyclic learning rate     Visualization    

Development of machine learning multi-city model for municipal solid waste generation prediction

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1551-6

摘要:

● A database of municipal solid waste (MSW) generation in China was established.

关键词: Municipal solid waste     Machine learning     Multi-cities     Gradient boost regression tree    

Predicting the elemental compositions of solid waste using ATR-FTIR and machine learning

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1721-1

摘要:

● A method based on ATR-FTIR and ML was developed to predict CHNS contents in waste.

关键词: Elemental composition     Infrared spectroscopy     Machine learning     Moisture interference     Solid waste     Spectral noise    

Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature

《医学前沿(英文)》 2023年 第17卷 第4期   页码 768-780 doi: 10.1007/s11684-023-0982-1

摘要: Previous studies have revealed that patients with hypertrophic cardiomyopathy (HCM) exhibit differences in symptom severity and prognosis, indicating potential HCM subtypes among these patients. Here, 793 patients with HCM were recruited at an average follow-up of 32.78 ± 27.58 months to identify potential HCM subtypes by performing consensus clustering on the basis of their echocardiography features. Furthermore, we proposed a systematic method for illustrating the relationship between the phenotype and genotype of each HCM subtype by using machine learning modeling and interactome network detection techniques based on whole-exome sequencing data. Another independent cohort that consisted of 414 patients with HCM was recruited to replicate the findings. Consequently, two subtypes characterized by different clinical outcomes were identified in HCM. Patients with subtype 2 presented asymmetric septal hypertrophy associated with a stable course, while those with subtype 1 displayed left ventricular systolic dysfunction and aggressive progression. Machine learning modeling based on personal whole-exome data identified 46 genes with mutation burden that could accurately predict subtype propensities. Furthermore, the patients in another cohort predicted as subtype 1 by the 46-gene model presented increased left ventricular end-diastolic diameter and reduced left ventricular ejection fraction. By employing echocardiography and genetic screening for the 46 genes, HCM can be classified into two subtypes with distinct clinical outcomes.

关键词: machine learning methods     hypertrophic cardiomyopathy     genetic risk    

Machine learning for fault diagnosis of high-speed train traction systems: A review

《工程管理前沿(英文)》 doi: 10.1007/s42524-023-0256-2

摘要: High-speed trains (HSTs) have the advantages of comfort, efficiency, and convenience and have gradually become the mainstream means of transportation. As the operating scale of HSTs continues to increase, ensuring their safety and reliability has become more imperative. As the core component of HST, the reliability of the traction system has a substantially influence on the train. During the long-term operation of HSTs, the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures, thus threatening the running safety of the train. Therefore, performing fault monitoring and diagnosis on the traction system of the HST is necessary. In recent years, machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis. Machine learning has made considerably advancements in traction system fault diagnosis; however, a comprehensive systematic review is still lacking in this field. This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint. First, the structure and function of the HST traction system are briefly introduced. Then, the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed. Finally, the challenges for accurate fault diagnosis under actual operating conditions are revealed, and the future research trends of machine learning in traction systems are discussed.

关键词: high-speed train     traction systems     machine learning     fault diagnosis    

A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning

《环境科学与工程前沿(英文)》 2022年 第16卷 第3期 doi: 10.1007/s11783-021-1472-9

摘要:

• A spectral machine learning approach is proposed for predicting mixed antibiotic.

关键词: Antibiotic contamination     Spectral detection     Machine learning    

标题 作者 时间 类型 操作

Machine learning-based solubility prediction and methodology evaluation of active pharmaceutical ingredients

期刊论文

化学工程师的主动机器学习

Yannick Ureel, Maarten R. Dobbelaere, Yi Ouyang, Kevin De Ras, Maarten K. Sabbe, Guy B. Marin, Kevin M. Van Geem

期刊论文

Spatial prediction of soil contamination based on machine learning: a review

期刊论文

Elucidate long-term changes of ozone in Shanghai based on an integrated machine learning method

期刊论文

State-of-the-art applications of machine learning in the life cycle of solid waste management

期刊论文

Using machine learning models to explore the solution space of large nonlinear systems underlying flowsheet

期刊论文

Evaluation and prediction of slope stability using machine learning approaches

期刊论文

Machine learning in building energy management: A critical review and future directions

期刊论文

Big data and machine learning: A roadmap towards smart plants

期刊论文

MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal

期刊论文

Development of machine learning multi-city model for municipal solid waste generation prediction

期刊论文

Predicting the elemental compositions of solid waste using ATR-FTIR and machine learning

期刊论文

Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature

期刊论文

Machine learning for fault diagnosis of high-speed train traction systems: A review

期刊论文

A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning

期刊论文